谭保才
作者:   时间:2023-12-26  

谭保才

电 话: 0532-5863-0801, E-Mail: bctan@sdu.edu.cn

教育背景

1992/09-1997/06  博士 佛罗里达大学(美国) 植物分子遗传学

1984/09-1987/06  硕士  兰州大学 植物生理学

1980/09-1984/06  学士  兰州大学 植物生理学

工作经历

2022/01- 至 今        山东大学特聘教授、泰山学者II期

2018/05-2020/12    山东大学(青岛)副校长生命科学学院院长、山东大学特聘教授

2013/05-2022/01    山东大学生命科学学院院长、山东大学特聘教授、泰山学者

2011/01-2013/12    香港中文大学深圳研究院 研究员

2007/12-2013/12    香港中文大学植物分子与农业技术研究所 研究副教授

2001/03-2007/12    佛罗里达大学癌症与遗传研究所 研究助理教授

1997/07-2001/02    佛罗里达大学植物分子与细胞生物学 博士后

1992/08-1997/06    佛罗里达大学园艺科学系 研究助理

1987/06-1992/08    兰州大学生物系 讲师

科研方向

本课题组主要研究植物种子发育的分子遗传调控机制。种子大小和营养成分与粮食作物的产量和营养品质密切相关,解析种子发育的分子遗传调控机制既是植物分子遗传学的一个根本问题,也是农业生产高产优质育种的重要基础。种子发育过程涉及复杂的遗传调控网络,突变体是解析遗传网络组成元件的主要遗传材料。我们利用Mutator转座子分离了大量的玉米种子发育突变体,也开发了针对性的基因快速克隆方法,通过对这些突变体的遗传学、分子生物学和细胞生物学分析,查明其分子功能并解析其调控种子发育的分子机制和调控网络,为分子育种提供理论基础。目前为止,实验室克隆并揭示了40多个玉米籽粒发育关键基因的功能;发现了ABA合成途径的关键证据;解析了细胞器RNA编辑和内含子剪接的机制;共同构建了UniformMu玉米突变体库供全球科学家使用。关于ABA合成途径的研究成果编入美国《Plant Physiology》(Taiz & Zaiger ed.) 大学教材。

(本课题组每年招收4-6名硕士研究生,1-2名博士研究生。长期招收博士后。)

主持课题

·2023-2027,国家自然科学基金重点项目,玉米细胞壁木聚糖阿魏酰化的分子机制研究。

·2018-2019,国家自然科学基金重大研究计划重点项目,玉米籽粒大小主要遗传网络的解析和分子机制研究。

·2017-2021,国家自然科学基金重点项目,玉米种子发育关键PPR基因的功能和作用机理研究。

·2015-2017,国家自然科学基金重大研究计划重点项目,玉米籽粒形成关键基因的克隆和生物学功能分析。

·2014-2016, Hong Kong RGC, Functional analysis of SMALL KERNEL 11 and identification of its interacting proteins.

·2013-2015, Hong Kong RGC, Functional analysis of Empty pericarp5 in maize seed development.

·2012-2015,  国家自然科学基金面上项目,  玉米小籽粒基因Smk2的克隆和功能分析。

·2012-2014, Hong Kong RGC,  Functional analysis of EMB15 in maize seed development.

·2012-2016, 深圳孔雀计划 (Co-PI), Applied research of plant molecular biotechnology on modern agriculture.

·2010-2012, Hong Kong RGC,  Genetic and functional dissection of Emb12 and Emb14 in maize embryo development.

代表性研究成果

*Corresponding author(通讯作者)

1.Liu X.Y., Jiang, R.C., Ma, B., Wang, Y., Yang, Y.Z., Xu, C., Sun, F., Tan, B.C.* (2023). Emb27 encodes the plastid ribosomal protein S13 and is essential for maize embryogenesis and seedling development. Plant Physiology (in press).

2.Ma, B.#, Liu, H.#, Xiu, Z., Yang, HH., Wang, H., Wang, Y., Tan, B.C.* (2023). Defective kernel 58 encodes an Rrp15p domain-containing protein essential to ribosome biogenesis and seed development in maize. New Phytologist doi: 10.1111/nph.19460.

3.Yang Y.Z., Ding, S., Liu., X.Y., Xu, C., Sun, F., Tan, B.C.* (2023). The DEAD-box RNA helicase ZmRH48 is required for the splicing of multiple mitochondrial introns, mitochondrial complex biosynthesis, and seed development in maize. JIPB 65: 2456-2468.

4.Zu, X., Luo, L., Wang, Z., Gong, J., Yang, C., Deng, X., Song, X., Wang, Y., Xu, C., Qiao X., Chen, C., Tan, B.C., Cao, X.* (2023). A mitochondrial pentatricopeptide repeat protein enhances cold tolerance by modulating mitochondrial superoxide in rice. Nature Commun. 14: 6789.

5.Wang, Y., Li, H., Huang, Z.Q., Ma, B., Yang, Y.Z., Xiu, Z.H., Wang, L., Tan, B.C.* (2023). Maize PPR-E proteins mediate RNA C-to-U editing in mitochondria by recruiting the trans deaminase PCW1. Plant Cell 35: 529–551.

6.Yang, Y.Z.#, Liu, X.Y.#, Tang, J.J., Wang, Y., Xu, C., Tan, B.C.* (2022). GRP23 plays a core role in E-type editosomes via interacting with MORFs and atypical PPR-DYWs in Arabidopsis mitochondria. Proc. Natl. Acad. Sci. USA 119: e2210978119.

7.Liu, H., Xiu, Z., Yang, H., Ma, Z., Yang, D., Wang, H., Tan, B.C.* (2022). SHREK1 encoding a WD40 protein involves in ribosome biogenesis by regulating pre-rRNA processing in maize. Plant Cell 34: 4028-4044.

8.Cao, S.K.#, Liu, R.#, Wang, M., Sun, F., Sayyed, A., Shi, H., Wang, X., Tan, B.C.* (2022). (2022). Small PPR protein SPR2 interacts with PPR-SMR1 to facilitate the splicing of introns in maize mitochondria. Plant Physiology 190: 1763-1776.

9.Zhao, J.#, Cao, S.K.#, Li, X.L., Sun, F., Jiang, R.C., Xu, C.H., Tan, B.C.* (2022). Emp80 is required for mitochondrial nad7 and atp4 transcript editing and seed development in maize. New Phytologist 234: 1237-1248.

10.Wang F., Yu, Z., Zhang, M., Wang, M., Lu, X., Liu, X., Li, Y., Zhang, X., Tan, B.C., Li, C.*, Ding Z.* (2021). ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize. Plant Biotechnol. J. 20: 526-537.

11.Liu, X.Y., Jiang, R.C., Wang, Y., Tang, J.J., Sun, F., Yang, Y.Z., Tan, B.C.* (2021). ZmPPR26, a DYW-type pentatricopeptide repeat protein, is required for C-to-U RNA editing at atpA-1148 in maize chloroplasts. J. Exp. Bot. 72: 4809-4821.

12.Xu, C., Shen, Y., Li, C., Lu, F., Zhang, M.D., Meeley, R.B., McCarty, D.R. Tan, B.C.* (2021). Emb15 encodes a plastid ribosomal assembly factor essential for embryogenesis in maize. Plant J. 106: 214-227.

13.Yang, Y.Z., Ding, S., Liu, X.Y., Tang, J.J., Wang, Y., Sun, F., Xu, C., Tan, B.C.* (2021). EMP32 is required for the cis-splicing of nad7 intron 2 and seed development in maize. RNA Biology 18: 499-509.

14.Xu, C., Song, S., Yang, Y.Z., Lu, F., Zhang, M.D., Sun, F., Jia, R., Song, R., Tan, B.C.* (2020). DEK46 performs C-to-U editing of a specific site in mitochondrial nad7 introns that is critical for intron splicing and seed development in maize. Plant J. 103: 1767-1782.

15.Liu, R., Cao, S.K., Sayyed, A., Yang, H.H., Zhao J., Wang, X.M., Jia, R.X., Sun, F., Tan, B.C.* (2020). The DYW-subgroup pentatricopeptide repeat protein PPR27 interacts with ZmMORF1 to facilitate mitochondrial RNA editing and seed development in maize. J. Exp. Bot. 71: 5495-5505.

16.Wang, H.C., Sayyed, A., Liu, X.Y., Yang, Y.Z., Sun, F., Wang, Y., Wang, M.D., Tan, B.C.* (2020). SMALL KERNEL4 is required for mitochondrial cox1 transcript editing and seed development in maize. JIPB. 62: 777-792.

17.Wang Y., Liu, X.Y., Yang, Y.Z., Huang, J., Sun, F., Lin, J.S., Gu, Z.Q., Sayyed, A., Xu, C., Tan, B.C.* (2019). Empty pericarp21 encodes a novel PPR-DYW protein that is required for mitochondrial RNA editing at multiple sites, complexes I and V biogenesis, and seed development in maize. PLoS Genetics 15(8): e1008305.

18.Chen, Z.#, Wang, H.C.#, Shen, J., Sun, F., Wang M.D. Xu, C., Tan, B.C.* (2019). PPR-SMR1 is required for the splicing of multiple mitochondrial introns and interacts with Zm-mCSF1 and is essential for seed development in maize. J. Exp. Bot. 70: 5245-5258.

19.Sun, F., Xiu, Z., Jiang, R., Liu, Y., Zhang, X., Yang, Y.Z., Li, X., Zhang, X., Wang, Y., Tan, B.C.* (2019). The mitochondrial pentatricopeptide repeat protein EMP12 is involved in the splicing of three nad2 introns and seed development in maize. J. Exp. Bot. 70: 963-972.

20.Li, X.L., Huang, W.L., Jiang R.C., Sun, F., Wang, H.C., Zhao, J., Xu, C., Tan, B.C.* (2019). EMP18 functions in mitochondrial atp6 and cox2 transcript editing and is essential to seed development in maize. New Phytologist 221: 896-907.

21.Sun, F., Zhang, X., Shen, Y., Wang, H., Liu, R., Wang, X., Gao, D., Yang, Y.Z., Liu, Y., Tan, B.C.* (2018). The pentatricopeptide repeat protein EMPTY PERICARP8 is required for the splicing of three mitochondrial introns and seed development in maize. Plant J. 95: 919-932.

22.Zhang Y.F., Suzuki M., Sun F., Tan B.C.* (2017). The mitochondrion-targeted PENTATRICOPEPTIDE REPEAT78 protein is required for nad5 mature mRNA stability and seed development in maize. Molecular Plant 10: 1321-1333.

23.Yang Y.Z., Ding S., Wang Y., Li C.L., Shen Y., Meeley R., McCarty D.R., Tan B.C.* (2017). Small kernel2 encodes a glutaminase in Vitamin B6 biosynthesis and is essential for maize seed development. Plant Physiology 174: 1127-1138.

24.Cai M., Li S., Sun F., Sun Q., Zhao H., Ren X., Zhao Y., Tan B.C., Zhang Z.*, Qiu F.* (2017). Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. Plant J. 91: 132-144.

25.Tan B.C., Guan J.C., Ding S., Wu S., Koch K.E., McCarty D.R.* (2017). Structure and origin of the White Cap locus and its role in the evolution of grain color in maize. Genetics 206: 135-150.

26.Yang Y.Z., Ding S., Wang H.C., Sun F., Huang W.L., Song S., Xu C.H., Tan B.C.* (2017). The pentatricopeptide repeat protein EMP9 is required for mitochondrial ccmB and rps4 transcript editing, mitochondrial complex biogenesis and seed development in maize. New Phytologist 214: 782-795.

27.Xiu Z., Sun F., Shen Y., Zhang X., Jiang R., Bonnard G., Zhang J., Tan B.C.* (2016). EMPTY PERICARP16 is required for mitochondrial nad2 intron 4 cis-splicing and seed development in maize. Plant J. 85: 507-519.

28.Li C., Shen Y., Meeley R., McCarty D.R., Tan, B.C.* (2015). Embryo defective 14 encodes a plastid-targeted cGTPase essential for embryogenesis in maize. Plant J. 84: 785-799.

29.Sun F., Wang X., Bonnard G., Shen Y., Xiu Z., Li, X., Gao, D., Zhang, Z., Tan B.C.* (2015). Empty pericarp 7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. Plant J. 84: 283-295.

30.Chen Y., Hou M., Liu L., Wu S., Shen Y., Ishiyama K., Kobayashi M., McCarty D.R., Tan B.C.* (2014). The maize DWARF 1 encodes a Gibberellin 3-oxidase and is dual-localized to the nucleus and cytosol. Plant Physiology 166: 2028-2039.

31.Li X.J., Zhang Y.F., Hou M.M., Sun F., Shen Y., Xiu Z.H., Wang X.M., Chen Z.L., Sun S.S.M., Small I., Tan B.C.* (2014). Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize and rice. Plant J. 79: 797–809.

32.Shen Y., Li C., Meeley R., McCarty D.R., Tan B.C.* (2013). Embryo defective 12 encodes translation initiation factor 3 and is essential to maize embryogenesis. Plant J. 74: 792-804.

33.Liu Y., Xiu Z.H., Meeley R., Tan B.C.* (2013). Empty pericarp 5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. Plant Cell 25: 868-883.

34.Messing S.A., Gabelli S.B., Echeverria I., Vogel J.T., Guan J.C., Tan B.C., Klee H.J., McCarty D.R., Amzel L.M. (2010). Structural insights into maize Viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid. Plant Cell 22: 2970-2980.

35.Vogel J.T., Tan B.C., McCarty D.R., Klee H.J. (2008). The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J. Biol. Chem. 283: 11364-1137.

36.McCarty D.R., Settles A.M., Suzuki M., Tan B.C., Latshaw S., Porch T., Robin K., Baier J., Avigne W., Lai J., Messing J., Koch K.E., Hannah L.C. (2005). Steady-state transposon mutagenesis in inbred maize. Plant J. 44: 52-61.

37.Tan B.C.*, Joseph L.M., Deng W.T., Liu L.J., Li Q.B., Cline K., McCarty D.R. (2003). Molecular characterization of the Arabidopsis nine-cis-expoxycarotenoid dioxygenase gene family. Plant J. 35: 44-56.

38.Tan B.C.*, Cline K., McCarty D.R. (2001). Localization and targeting of VP14 epoxy-carotenoid dioxygenase to the chloroplast membrane. Plant J. 27: 373-382.

39.Tan B.C., Schwartz S., Zeevaart J.A., McCarty D.R.* (1997). Genetic control of abscisic acid synthesis in maize. Proc. Natl. Acad. Sci. USA 94: 12235-12240.

40.Schwartz S.#, Tan B.C.#, Gage D.A., Zeevaart J.A., McCarty D.R.* (1997). Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276: 1872-1875.

奖励

1. Award of Excellence in Graduate Research, University of Florida, 1998 (佛罗里达大学优秀博士毕业论文奖).

上一条:王官锋

下一条:田会玉

办公地址:山东省青岛市即墨滨海路72号   邮编:266237

All Rights Reserved 隐私保护 山东大学生命科学学院 版权所有

 

扫码关注微信公众号
新浪微博 学校邮箱 校园卡自助服务平台 OA办公系统 信息化公共服务平台 财务报账系统 优酷